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Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in
Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the
role of preclinical studies designed to advance stem cell therapies for cardiovascular
disease. The quality of this research has improved over the past 10 to 15 years and overall
indicates that cell therapy promotes cardiac repair. However, many issues remain,
including inability to provide complete cardiac recovery. Recent studies question the need
for intact cells suggesting that harnessing what the cells release is the solution. Our
contribution describes important breakthroughs and current directions in a cell-based
approach to alleviating cardiovascular disease.
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approach to alleviating cardiovascular disease.

Introduction to Stem Cell Therapy: Landmark Preclinical Studies/Appropriate
Animal Models
Cardiovascular disease is the leading cause of mortality worldwide. However, despite
improvements in pharmacological and interventional treatments, 1 in 3 men and 1 in 4
women die within a year of their first myocardial infarction (MI).  The prevalence of heart
failure (HF) and MI requires new therapeutic approaches, which must be first tested in
animal models to establish safety and therapeutic efficacy, before use in humans. The
recent scientific statement of the TACTICS (Transnational Alliance for Regenerative
Therapies in Cardiovascular Syndromes) group provides an overview of the many
challenges associated with preclinical and clinical studies of stem cell therapy for heart
failure  and is providing a series of guidelines and recommendations for moving this field
forward.  Unlike pharmacological treatments, which primarily manage the disease, stem
cell administration promotes the restoration of lost functionality. However, negative
outcome trials and the recent debate on the efficacy of the human clinical cell–based
therapy in patients with acute MI (AMI)  mean that we must continue to find better
approaches that will ensure success in human trials.

Although myocyte necrosis leads to remodeling post-MI, this effect is secondary to a
cascade of cellular changes that seem to be the primary cause of ventricular dilation,
hypertrophy, and scar formation.  In contrast to the age-old paradigm that cardiac
myocytes are terminally differentiated, the current consensus is that ≈0.5% to 2% of
cardiomyocytes undergo mitosis annually.  In infarcted human hearts, myocyte growth
becomes enhanced at the border zone after an ischemic event with up to 3- to 4-fold
more dividing myocytes 1 week post-infarction than in end-stage HF.  Understanding and
enhancing cardiomyocyte proliferation post-MI are central themes of regenerative
medicine.

In early murine studies, mobilization of myeloid clonogenic cells from spleen and bone
marrow (BM) was observed during wound healing.  Later discoveries noted the effects of
neovasculogenesis after endothelial progenitor cells (EPCs) mobilized secondary to hind
limb ischemia. Rabbits mobilize EPCs specifically from the BM after hind limb ischemia,
which was enhanced after GM-CSF (granulocyte-macrophage colony-stimulating factor)
administration.  These findings paved the way for the use of progenitor cell to treat
disease. During these early studies, there was no notion of intrinsic self-renewing cardiac
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disease. During these early studies, there was no notion of intrinsic self-renewing cardiac
cells. In 2003, this paradigm changed; cardiac stem cells (CSCs) that are self-renewing,
clonogenic, and multipotent were observed in adult rat hearts.  Thus, began the concept
that, with some help, the heart could heal itself. The controversy concerned the nature of
that help. For many, the answer was which type of stem cell should be used to treat heart
disease. The safety, efficacy, and fate of each cell line needed further research in animal
models to determine not only which model was best to simulate human cardiac response
but which of these various cell types should be studied further.

Small Animal Studies
For preclinical development, an appropriate animal model that accurately reflects human
pathological conditions is essential. Cell and molecular studies provide important
mechanistic data, and toxicity studies evaluate candidate drugs,  but a working heart is
needed to evaluate and optimize treatments.

New therapies for cardiovascular disease are usually first evaluated in small animal
models (rodents), a model that provides relatively rapid and economical testing and
adequate group sizes to ensure sufficient statistical power. Recent technological
advances in PET-MRI (positron emission tomography/magnetic resonance) imaging and
echocardiography have improved the assessment of cardiovascular outcomes in
rodents.  Mouse models do have inherent advantages but also some limitations. They
can respond very differently than humans to treatment,  their hearts beat at 400 to 600
bpm, and they have a variety of anatomic differences with human hearts (reviewed by
Santos et al ). Transgenic and knockout mice are widely available, making them
particularly useful for assessing genetic factors and inducers of cardiovascular diseases.
However, genetic changes can alter cardiac morphology, which can limit the advantages
of these models.  Discrepancies between human and mouse embryonic stem cells
(ESCs), including the expression of genes regulating apoptosis, cytokine expression, and
cell cycle regulation, can further limit the relevance of mouse models.

Rat heart mass is roughly 10-fold greater than mice, and surgical expertise is less
demanding. The rat coronary ligation model was first described in 1979,  and ligation of
the left anterior descending (LAD) coronary artery is the most widely used model for MI. A
rat model of MI was instrumental in the evaluation and development of angiotensin-
converting enzyme inhibitors  as prelude to clinical trials that resulted in the approval
of captopril as a therapeutic intervention for HF after MI.  However, positive rat preclinical
studies do not necessarily translate to successful clinical trials. Endothelin receptor
antagonists, such as bosentan, improved survival and hemodynamic characteristics in the
rat after MI,  but failed to show a benefit in humans with HF.
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Large Animal Studies
Cardiac repair studies show larger effects in rodents, increased left ventricular ejection
fraction (LVEF) up to 20%, and normalization of LV function, in contrast to large animal
studies (mean LVEF improvement ≈5%–7%).  This moderate benefit corresponds better
to the results of clinical trials, giving realistic insight into the expected benefit of human
cell–based cardiac therapies. The presence or absence of collateral coronary circulation is
an important factor for choosing an adequate animal model for a particular study. Large
animals such as pigs, dogs, or sheep satisfy many of these criteria. Dogs have an
extensive collateral coronary circulation, whereas pigs and sheep have no functionally
relevant vascular adaptation system, similar to humans.  Thus, a dog model is suitable
for studying vascular adaptation to myocardial ischemia, whereas pigs and sheep are
generally regarded as appropriate to assess the direct myocardial effects of hypoxic
injuries.

Initial studies in canine hearts in the late 1970s paved the way to understand myocardial
ischemia and the development of HF.  In a dog MI/reperfusion model, the angiotensin
receptor blocker valsartan produced decreased infarct size and increased EF and
improved diastolic function.  Ischemic cardiomyopathies can be simulated in canines
through microembolization,  resulting in reduction of LVEF to <35%, a model that has
been used for evaluation of several drugs for treating HF.  The drawback of these studies
is that canines have a significantly more complex coronary circulation than humans, such
that their maximal oxygen consumption is greater and their degree of reproducible infarct
size more variable.  Therefore, despite the advantages of the canine, a better model was
still needed. One such model is the sheep, where coronary anatomy is consistent with
humans; there is a lack of significant collateral circulation, allowing for reproducible
infarcts. However, sheep carry zoonotic disease, a problem not associated with other
large animals, and ovine thoracic and gastrointestinal anatomy complicate detailed
imaging, so is not ideal for typical transthoracic imaging studies.

Swine cardiac anatomy compares favorably to that of humans. In the vast majority of
cases, the large LAD and the dominant right coronary artery, supply the posterior
interventricular septum and the atrioventricular node; and the minimal collateral flow, is
also similar to humans.  Furthermore, adult Göttingen and Yucatan minipigs possess
cardiac structure and function comparable to humans, including high mortality associated
with large infarcts.  For chronic studies, they remain within a manageable weight range
when compared with Yorkshire pigs.  By ligation of the LAD, MI can be induced by either
open- or closed-chest methods. Open-chest surgery provides easy access to coronary
arteries, visual control of contractility, and facilitates the generation of defined infarction
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sites and sizes. However, closed-chest procedures avoid the thoracotomy-associated
trauma of open-chest surgery  as in humans. Large animal studies are very expensive
(10–100× higher than similar small animal studies), limiting the number of animals in a
study. A major advantage of large animal studies is the ability to use imaging modalities
identical to those for humans, resulting in similar measures and outcome parameters,
increasing human relevance but also costs.

This overview of preclinical models for regenerative medicine demonstrates that each has
inherent advantages and disadvantages. Small animal studies provide an initial indication
of the potential of the intervention and must be further evaluated in large animals whose
cardiovascular physiology more closely resembles humans. Only when a treatment
provides sufficient therapeutic efficacy in large animals should it be moved to clinical
trials.

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs; also called mesenchymal stromal cells) have been the
most commonly used stem cell for treating cardiac dysfunction. MSCs are relatively easy
to isolate and can be expanded significantly ex vivo. Their immunosuppressive properties
and their lack of immunogenicity make them excellent candidates for cell therapy.
However, the various methods of cell expansion, isolation and characterization,
necessitated a consistent definition of MSCs (Figure 1). The Mesenchymal and Tissue
Stem Cell Committee of the International Society for Cellular Therapy proposed distinct
criteria: plastic adherence under standard culture conditions, positive for CD105, CD73,
and CD90, and negative for CD45, CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR
(human leukocyte antigen- antigen D related) and the ability to differentiate into
osteoblasts, adipocytes, and chondroblasts in vitro.  MSCs have an additional
therapeutic advantage; they lack MHC class II antigens and not only fail to elicit an
immune response (at least initially) but also downregulate host natural killer cells and T
lymphocytes.  Similarly, xenotransplantation of human BM-derived MSCs (BM-MSCs)
into murine  and later porcine  hearts revealed the ability of (a low percentage of) MSCs
to integrate into the myocardium and differentiate into cardiomyocytes.
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Download figure | Download PowerPoint

Figure 1. Procurement and isolation of mesenchymal stem cells (MSCs). MSCs
isolated from bone marrow and the mononuclear cells isolated by Ficoll density
centrifugation. MSCs can be separated from other mononuclear cells by their plastic
adherence in culture. Reprinted from Williams and Hare  with permission. Copyright
©2011, the American Heart Association.

Cells with similar characteristics to BM-MSCs are found in virtually every tissue ;
however, most cardiac studies have used MSCs from BM or a few other tissues (although
this trend may be changing) including adipose-derived and umbilical cord (UC)
blood/Wharton’s jelly–derived MSCs. BM- and adipose-derived MSCs most consistently
differentiate into bone, fat, and cartilage and have the highest capacity for self-renewal.
Although circulating MSCs, which are thought to arise from BM, have long been debated
as a source for future clinical use, they have produced contradictory results, reducing
confidence in them as a source.

BM-Derived MSCs
BM is of particular interest for stem cell therapy because it is a source of a variety of
multipotent precursors (MSCs, mononuclear cells, and EPCs; see below). However, stem
cells comprise only 1% to 3% of BM, the majority being lymphocytes; but there are other
undesirable cells for cardiac repair: monocytes, pre-adipocytes, and osteoblasts.  An
important property of MSCs is their ability to home to sites of injury, a property first
demonstrated in a baboon lethal radiation model.  Murine studies demonstrated that
MSCs migrate to ischemic cardiac tissue after intravenous infusion.  Factors thought to
play a role in these migratory and stimulatory properties include the stem cell factor/c-kit
(CD 117) ligand–receptor complex.  Once the ability of MSCs to home was recognized,
studies focused on improving cardiac function, which were encouraged by the ability of
murine BM-MSCs to become functional cardiomyocytes when treated with 5-azacytidine
(5-aza), a demethylase and cytosine analog. MSCs begin beating after 2 weeks of 5-aza
exposure, and after 3 weeks, the beating becomes synchronized.

Overall, most, but not all, studies in small and large animals, for both AMI and chronic MI,
show improved cardiac structure and function after BM-MSCs administration (see Narita
and Suzuki for review ). Determining the precise mechanism(s) is difficult because few
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and Suzuki for review ). Determining the precise mechanism(s) is difficult because few
cells remain in the myocardium over time. The consensus is that beneficial MSC effects
are primarily paracrine, involving not only secretion of growth factors (Table) but also
microvesicles and exosomes.  The efficacy of these cells also seems to be influenced
by the route of injection.

Table. Paracrine Factors Secreted by MSCs

Secreted Factor Function

Proangiogenesis

 FGF-2 Induces endothelial and smooth muscle proliferation

 FGF-7 Induces endothelial cell proliferation

 MCP-1 Induces angiogenesis; recruits monocytes

 PDGF Smooth muscle proliferation

 PlGF Promotes angiogenesis

 TGF-β Vessel maturation

 VEGF Endothelial cell proliferation, migration, tube formation

Remodeling of extracellular matrix

 MMP1 Loosens matrix; tubule formation

 MMP2 Loosens matrix; tubule formation

 MMP9 Loosens matrix

 PA Degrades matrix

 TNF-α Degrades matrix; modulates cell proliferation
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 TNF-α Degrades matrix; modulates cell proliferation

Stem cell proliferation, recruitment, and survival

 bFGF Enhances proliferation of endothelial and smooth muscle cells

 G-CSF Increases proliferation and differentiation of neutrophils

 IGF-1 Regulates cell growth and proliferation; inhibits apoptosis

 M-CSF Increases proliferation and differentiation of monocytes

 Tβ4 Promotes cell migration

 SDF Progenitor cell homing

 SFRP1 Enhances cell development

 SFRP2 Inhibits apoptosis; enhances cell development

Immunomodulatory

 HO1 Inhibits T-cell proliferation

 HGF Inhibits CD4  T-cell proliferation

 IDO Inhibits innate and adaptive immune cell proliferation

 iNOS Inhibits inflammation

 IL-6 Regulates inflammation; VEGF induction

 PGE Inhibits inflammation

bFGF indicates basic fibroblast growth factor; FGF, fibroblast growth factor-7; G-CSF,
granulocyte colony–stimulating factor; HGF, hepatocyte growth factor; HO1, heme
oxygenase-1; IDO, indoleamine 2,3-dioxygenase; IGF, insulin-like growth factor; IL,
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Small Animal Studies

Orlic et al  were among the first to show an improvement in cardiac function after
intramyocardial injection of (eGFP [enhanced green fluorescent protein] labeled) lineage
(Lin) /c-kit  BM-derived stem cells into female mice in an AMI model. They observed
eGFP  cardiomyocytes, endothelial cells, smooth muscle cells, and vascular structures in
the infarcted region of the heart, leading to the conclusion that BM-derived cells can
engraft and repair myocardium in vivo.  Since then small animal studies have
reproducibly shown favorable outcomes after AMI. Reduction in infarct size and fibrosis,
with enhancement of LVEF and vasculogenesis, is among the common findings in the
animal trials.  Additional benefits include decreased apoptosis, decreased fibrosis,
increased VEGF (vascular endothelial growth factor) expression, and increased regional
blood flow in the infarct zone.

An emerging use for stem cells, particularly BM-MSCs, is in the treatment of idiopathic
dilated cardiomyopathy (DCM). Given the lack of distinct areas of hypoperfusion and
systolic dysfunction in the absence of coronary disease, it is a challenge to reverse this
effect.  One group established a DCM model in rabbits. BM-MSCs were pre-incubated
with 5-aza to induce differentiation into cardiomyocyte-like cells and injected directly into
the myocardium resulting in an increase in LV end-systolic pressure and a decrease in LV
end-diastolic pressure. There was also an attenuation of myocardial fibrosis with an
increase in VEGF.  Similarly, in a rat DCM model, there was a noticeable decrease in LV
end-diastolic pressure and an increase in LV end-systolic pressure.

Intramyocardial injection of BM-MSCs after AMI produced a significant reduction in
fibrosis and a noticeable engraftment of MSCs which differentiated into cardiomyocytes.
Infarct size and the number of vascular cells in the myocardial structure were markedly
improved.  Although this study showed high engraftment of MSCs, most studies do not,
with engraftment rates ranging from 6% to 12% of injected cells.  In an effort to improve
engraftment, Simpson et al  developed an epicardial patch composed of human BM-

oxygenase-1; IDO, indoleamine 2,3-dioxygenase; IGF, insulin-like growth factor; IL,
interleukin; iNOS, inducible nitric oxide synthase; MCP, monocyte chemoattractant
protein-1; M-CSF, macrophage colony–stimulating factor; MMP, metalloproteinase;
MSCs, mesenchymal stem cells; PA, plasminogen activator; PDGF, platelet-derived
growth factor; PGE , prostaglandin E ; PlGF, placental growth factor; SDF, stem cell–
derived factor; SFRP, secreted frizzled-related protein; TGF, transforming growth factor;
TNF, tumor necrosis factor; Tβ4, thymosin-β4; and VEGF, vascular endothelial growth
factor. Reprinted from Williams and Hare  with permission. Copyright ©2011, the
American Heart Association.
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engraftment, Simpson et al  developed an epicardial patch composed of human BM-
MSCs and secured it to the acutely infarcted region. One week later, 23% of the cells
engrafted into the myocardium. At 4 weeks, there was less LV dilation and better
preservation of wall thickness, but without improvement in ventricular function when
compared with controls. The authors attribute the latter finding to the small number of
MSCs (1×10 ) that were initially embedded in the patch.

Large Animal Studies

Both autologous and allogeneic BM-MSCs produce beneficial effects in swine
AMI  and chronic  MI models. Early studies highlighted the engraftment and
trilineage differentiation (cardiomyocyte, endothelium, and vascular smooth muscle) of
MSCs.  In a porcine model, labeled allogeneic BM-MSCs injected into the myocardium
after AMI were found in the infarct region 8 weeks later. These cells expressed VEGF and
specific cardiomyocyte proteins that suggested an upregulation of vasculogenesis and
myocyte differentiation. Imaging and gross inspection showed an increase in LVEF and in
subendocardial thickness and a decrease in scar size in the cell-treated group.
Although some engraftment occurs, at least in the short term, the consensus is that MSC
therapy provides therapeutic efficacy through secretion of growth factors, microvesicles,
and exosomes (see below). Of particular importance is the observation that
intramyocardial injection of BM-MSCs post-MI in Yorkshire pigs increased proliferation of
endogenous CSCs.

In chronic ischemic cardiomyopathy settings, BM-MSC therapy has focused on the ability
of MSCs to reduce fibrosis and reverse remodeling. Reduced myocardial thinning in the
infarcted zone was reported in the treatment group after gross inspection. Histological
analysis revealed MSC engraftment up to 6 months post-implantation.  Schuleri et al
assessed whether cell dose is an important parameter. They injected either 20×10  versus
200×10  autologous cells via an intramyocardial route 12 weeks post-MI. Delayed
enhancement showed a decrease in infarct size in the low-dose group and a decrease in
infarct volume in the high-dose group. Myocardial wall thickening was noted in both
groups. Contractility was increased in the noninfarcted region in both MSC groups ;
however, the contractility in the infarcted region was increased in only the high-dose
group. Quevedo et al  similarly tested the efficacy and safety of allogeneic MSCs in a
swine model of chronic MI. Animals were injected via a transendocardial route. Twelve
weeks post-injection, the MSCs had engrafted, vasculogenesis flourished, and myocardial
blood flow, LVEF, and regional contractility had improved when compared with placebo.

Stro-1  BM-MSCs
A subset of BM-MSCs, BM progenitor cells (MPCs), has gained some interest over the
past several years. These Stro-1 /CD34  cells are an immature subfraction of BM-
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past several years. These Stro-1 /CD34  cells are an immature subfraction of BM-
MSCs.  In addition to their ability to self-renew, they can differentiate into chondrocytes,
adipocytes, chondroblasts, and smooth muscle cells. Proponents of this subtype argue
that MSCs in general are hard to define completely and this cell subtype can be isolated
by immunoselection and has an enhanced ability to replicate and differentiate compared
with traditional MSCs.  Animal studies with MPCs have produced promising results.

Large Animal Studies

Acutely infarcted sheep received intracoronary injection of allogeneic MPCs. There was a
40% decrease in scar size and a 50% increase in vascular density.  Another group used
echocardiography to guide the injection of intramyocardial allogeneic MPCs into sheep 4
weeks post-MI. An increase in LVEF, wall thickness, and vascular density was reported.
In a nonischemic model, transendocardial administration of ovine allogenic cells produced
decreased LVESV, stabilization of LVEF, and decreased fibrosis.

Adipose-Derived Stem Cells
Adipose-derived stem cells (AdSCs) are generated from enzymatic degradation of adipose
tissue, which yields the stromal vascular fraction. The stromal vascular fraction then
undergoes adherent culture purification to CD105 /CD34  AdSCs. Isolation of adipose
tissue (liposuction) is relatively inexpensive and is much less invasive compared with BM
aspiration and yields a large number of cells. AdSCs secrete a similar variety of growth
factors as BM-MSC,  and ex vivo can be differentiated into cardiomyocytes, endothelial
cells, vascular smooth muscle, and even pacemaker cells.  AdSCs, like BM-MSCs, are
immunoprivileged because of lack of MHC class II, and they can improve the function and
minimize the immune rejection of EPCs.  Given those similarities, their ease of isolation,
and the success of BM-MSCs, there is considerable interest in the potential of AdSCs to
improve the function of a failing heart.

Small Animal Studies

Although AdSCs and BM-MSCs overall behave similarly, an interesting study was
performed by Rasmussen et al  who isolated AdSC and BM-MSCs from an elderly
patient with ischemia. These cells were injected intramyocardially into rats 1 week post-
MI. Neither cell type promoted angiogenesis or reduced infarct size, but the AdSCs
improved LVEF.  This result suggests differences in efficacy as the cells age.

Although not currently being used in human trials, brown adipose tissue may show
promise in animal studies. Studies in rats demonstrated that CD29  and CD133
subpopulations of brown adipose tissue reduce infarct size and improve LV function
through the induction of cardiomyocyte proliferation.  However, more preclinical trials
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are needed because most of the preclinical studies were conducted on white adipose
tissue in mice or rats in an acute setting.

The therapeutic effects of adipose-derived cardiomyogenic cells, cells isolated from
AdSCs that are CD90  and retain the ability to express cardiac and skeletal muscle
proteins, were studied. Three days after ligation of the LAD, mice were injected with
adipose-derived cardiomyogenic cell into the coronary artery. Four weeks later, the mice
exhibited a reduction in remodeling, increased vasculogenesis, and stabilization of EF.

Large Animal Studies

A porcine model introduced AdSC via coronary artery infusion after AMI. Twenty-eight
days later, analysis showed a noticeable decrease in the perfusion defect, an increase in
EF, vascular density, and wall thickness.  Most studies with AdSCs involve AMI models;
however, 1 group used rabbits to study chronic ischemia. Three weeks post-MI, the
rabbits were injected with AdSCs directly into the infarcted myocardium. AdSCs were
associated with a greater vascular density, LVEF, and improved end-diastolic volume 5
weeks post-injection compared with controls. However, not all studies demonstrate that
AdSCs are very beneficial. Intracoronary administration of allogeneic AdSCs improved
perfusion but not LVEF after AMI in a porcine model,  but the route of delivery may have
affected the efficacy of the cells (see below). Improved perfusion and reduced infarct size
were also seen on administration of AdSCs into humanized pigs 4 weeks post-MI, but
only with the highest concentration of AdSCs (4×10  cells/kg), lower concentrations had
no effect on either parameter.

Umbilical Cord MSCs
Fibroblast-like cells were isolated from the connective tissue of the UC (Wharton’s jelly) in
the early 1990s  and became a source of MSCs. These cells have gained interest for
their noninvasive ease of extraction, high MSC yield, and short doubling time.  There are
limited preclinical data on UC blood and UC matrix MSCs; however, clinical trials are
currently underway. Transcriptional signature comparisons between BM-MSCs and UC
blood MSCs indicates distinct gene expression profiles. For example, UC blood MSCs
exhibit higher expression of genes associated with cell adhesion, proliferation, and
immune system functioning neurotrophic support, suggesting that these cells would be
better than BM-MSCs for neurodegenerative diseases.

Small Animal Studies

One group tested a murine model in an acute ischemic setting. After direct
intramyocardial injection of human UC matrix MSCs, the systolic function was preserved 2
weeks post-MI, but there were no differences in infarct size compared with controls, and
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weeks post-MI, but there were no differences in infarct size compared with controls, and
both groups experienced ventricular wall thinning and dilation. Histologically, there was a
lack of cell engraftment into the myocardium, which may indicate that the mechanism of
ventricular preservation was because of a paracrine effect.  A transgenic mouse model
with DCM received intramyocardial injections of human UC MSCs. One month later, the
LVEF was increased, the heart weight:body weight ratio decreased by 10%, and chamber
dilation reduced in the cell-treated group compared with placebo control mice.
Histologically, VEGF and IGF-1 (insulin-like growth factor-1) were upregulated and
vasculogenesis increased, whereas apoptosis, fibrosis, and vacuolization all decreased.
Rat DCM was treated with human UC matrix MSCs, resulting in reduced fibrosis and
cardiac dysfunction. The authors concluded that these cells worked, at least in part, by
inhibiting TNF (tumor necrosis factor)-α and TGF (transforming growth factor)-β1/Erk1/2
(extracellular signal–regulated kinase 1/2) signaling.  Roura et al  created a fibrin patch
to promote the efficacy of UC blood MSC in acutely infarcted mice. The cells were
retained within the patch for 4 weeks post-implantation. The patch-treated group yielded
a smaller infarct scar (16% versus 49%) and increased subjacent myocardial angiogenesis
compared with controls.  Latifpour et al  injected human UC matrix MSCs into the
cyanotic region in a rabbit model of AMI. Thirty days later, LVEF was significantly
improved with evidence of cell engraftment, decreased scar size, and chronic
inflammatory markers.

Large Animal Studies

Zhang et al  were the first to use human Wharton’s jelly MSCs in swine after AMI. Six
weeks after intramyocardial injection of cells, they observed improved perfusion in the
cell-treated group, engraftment of injected cells, some of which seemed to have
differentiated into cardiomyocytes and vascular endothelial cells. Furthermore, there was
an increased proliferation of immature cardiomyocytes expressing c-kit , reduced
apoptosis, and increased LVEF in the treated group compared with placebo.

Overall, MSCs obtained from a variety of tissues have demonstrated therapeutic efficacy.
They tend to work similarly, reducing scar size and immune response, increasing
perfusion, and improving cardiac function. Although MSCs have been studied for a
majority of stem cell studies, many other stem cells have promoted cardiac repair.

CSCs/Cardiac Progenitor Cells
A microenvironment or niche exists within the heart that is thought to play a critical role in
maintaining stem cells in an undifferentiated state, but releasing them from this hold when
necessary. Within the niche, stem cells give rise to cardiac progenitor cells, which migrate
to sites of myocardial injury in an effort to repair the damage. Unfortunately, these
endogenous stem cells quickly become depleted after large infarctions,  resulting in
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endogenous stem cells quickly become depleted after large infarctions,  resulting in
incomplete healing and subsequent HF. Although the idea of self-renewing cells in the
heart was once considered unlikely, this concept is now well accepted and includes
myocytes  and stem cells within the myocardium.

Small Animal Studies
The landmark study where c-kit  CSCs were initially identified was conducted in mice.
These cells were Lin /c-kit  (CD117; the receptor for stem cell factor), previously found in
neonatal myocardium,  were isolated from the heart, and clonally expanded in culture.
These Lin /c-kit  cells were injected into the peri-infarct region after MI in rats. The
resultant immunohistochemical staining and histological examination showed that c-kit
cells self-renew and act in a clonogenic and multipotent manner to produce
cardiomyocytes, smooth muscle cells, and endothelial cells.  Oskouei et al  directly
compared human c-kit  CSCs with human MSCs for cardiac repair in an AMI model in
immunodeficient mice. The CSCs exhibited more engraftment and differentiation,
produced greater improvements in remodeling and hemodynamic parameters and were
equally able to reduce scar size compared with 30-fold more human MSCs.
Overexpressing Pim1 kinase in c-kit  human CSCs augmented their retention within the
myocardium and their therapeutic efficacy in both a mouse  and swine  model of AMI.

Other notable CSCs include cells expressing stem cell antigen-1 (not found in humans),
side population cells (low in c-kit ), and islet-1 transcription factor cells (only found during
the neonatal period), none of which to date have been used in clinical trials.  Epicardium-
derived stem cells, while similarly not yet tested in clinical trials, may be a candidate cell
type, but require more preclinical testing. During murine cardiac development, these Wt1
cells develop into functional cardiomyocytes.  They are multipotent, resemble MSCs,
participate in cardiac development, and likely have the potential to promote myocardial
repair.  Determining the importance of c-kit  CSCs for cardiac development and as a cell
therapy for heart disease has been fraught with controversy. Although some investigators
minimize the role of CSCs,  recent studies have clarified their origin and differentiation
capabilities.

Large Animal Studies
In a chronic ischemic swine model, intracoronary administration of c-kit  CSCs into pigs 3
months post-MI demonstrated the therapeutic efficacy of these cells. Beginning 1 month
post-injection, the LVEF rose in the cell-treated group and there was a regional increase in
cardiac function. CSCs engrafted and some differentiated into cardiomyocytes and
vascular structures.
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Cardiospheres and Cardiosphere-Derived Cells
Cardiospheres are a heterogeneous group of stem cells isolated from myocardial biopsies,
that form clusters. The cells, initially isolated from human myocardial biopsies, express
stem cell–related antigens, and some cells spontaneously undergo cardiac differentiation.
On expansion ex vivo, these cells are called cardiosphere-derived cells (CDCs).  CDCs
have been studied as an autologous and allogeneic therapy for MI. Recently, it was
determined that the CD105 /CD90 /c-kit  population of CDCs represents the
therapeutically active cell fraction.

Small Animal Studies
Coronary infusion of allogeneic CDCs into rats post-MI reduced scar size and increased
cardiac function, myocyte cycling, and angiogenesis.  Allogeneic CDCs have also
proved effective in revitalizing senescent rats.

Large Animal Studies
CDC treatment of AMI  and chronic  MI in the pig produces beneficial results.
Recently, Gallet et al  demonstrated that CDC therapeutic effects are likely mediated via
CDC-derived exosomes.

BM Mononuclear Cells
BM mononuclear cells (BM-MNCs) are a heterogeneous cell population which includes
MSCs, hematopoietic cells, EPCs, and others. BM-MNCs are easier to isolate than the
component population and have been tested in numerous studies,  but in clinical trials
seem to be less effective than MSCs.

Small Animal Studies
Early studies of MI in rats showed that intramyocardial injection BM-MNCs promoted
significant vasculogenesis without an associated increase in VEGF or FGF (fibroblast
growth factor) at 2 weeks post-injection. However, there was a subsequent decrease of
vascularity in the 4-week group, which may have been secondary to the maturation of the
scar.  A cryoablation rat model tested mixing BM-MNCs into a fibrin matrix. Eight weeks
later, there was a greater enhancement of neovascularization in the cell+matrix group
compared with cells alone.

Large Animal Studies
Promising results were seen after direct BM-MNCs injection into the peri-infarct zone after
LAD ligation. LVEF increased, the perfusion defect markedly decreased, and the LV end-
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diastolic volume:body weight ratio decreased in the treated group.  Alestalo et al
showed a direct correlation between improvement in LVEF after AMI and the number of
retained cells seen on postmortem histological examination. Therefore, direct contact and
retention of BMCs in ischemic tissue may be critical. Fuchs et al  were the first to
establish the safety of transendocardial cell injection in a swine chronic ischemia model.
They reported improved perfusion of the ischemic zone and enhancement of wall
thickening 4 weeks post-MI,  as well as an increase in vascularization of the
myocardium and a decrease in scar size in the treated group. However, cardiac function
did not change in either group.  A canine model showed the most favorable effects with
regard to ventricular function  and in sheep no difference in function reported in cell-
treated animals compared with controls.  Nonetheless, in the preclinical setting, BM-
MNCs have produced enhancements to neovascularization and reduced scar size;
however, large animal models have shown variable effects in ventricular function.

Hematopoietic and EPCs
The transplantation of BM-derived cells into mice led to the discovery of a hematopoietic
source of regenerative cells. Hematopoietic stem cells and EPCs both are CD34 /CD133
cells and can transform into myeloid and lymphoid cells or once mobilized from the BM
into the blood after tissue injury can subsequently become endothelial cells, which can
promote neovascularization.

Small Animal Studies
Murine AMI studies have demonstrated enhanced neovascularization, EF, decreased scar
size, and differentiation of hematopoietic stem cells into endothelial cells in myocardial
tissue.  Manipulating the EPCs provides improved repair potential. Thal et al
compared the ability of EPCs or epigenetically reprogrammed EPCs to differentiate into
cardiomyocytes and promote cardiac repair post-AMI. The unmanipulated EPCs reduced
infarct size, reduced LV volume, and increased capillary density, but the manipulated (5-
aza, valproic acid) EPCs did all 3 significantly better. Furthermore, the manipulated EPCs
engrafted and differentiated into cardiomyocytes.

Large Animal Studies
EPC-conditioned media are cardioprotective after AMI in a swine model. Neutralizing IGF
activity in the media abrogated these effects.

Pluripotent Stem Cells
Transducing mouse fibroblasts with a set of transcription factors (Oct4, Sox2, Klf4, c-
MYC) now known as the Yamanaka factors produced novel pluripotent cells, induced
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MYC) now known as the Yamanaka factors produced novel pluripotent cells, induced
pluripotent stem cells (iPSCs). iPSCs have surface markers and functional properties
similar to ESCs  and can be differentiated into hormone-responsive beating cardiac
cells that mimic ESC-derived cardiomyocytes.  Produced from autologous tissue,
immune rejection and ethical concerns are no longer an issue. Using iPSC-derived and
ESC-derived cardiomyocytes reduces the tumor threat, but the cells remain immature and
have limited ability to restore cardiac function.

Small Animal Studies
Initial animal studies used direct injection of iPSCs into the myocardium of mice, resulting
in engraftment, improved cardiac function, increased wall thickness and reduced
fibrosis.  However, iPSC-derived cardiomyocytes engrafted long term in a rat model of
MI but failed to produce beneficial effects.

Large Animal Studies
The first studies in a large animal model examined coinjected human iPSCs and human
MSCs in acutely infarcted swine. The human iPSCs enhanced vasculogenesis, but the
combination of cells increased capillary density to a greater extent, likely secondary to the
decreased rates of apoptosis.  Kawamura et al  placed a sheet of dermal fibroblast-
derived human iPSC-derived cardiomyocytes over the infarcted area in an ischemic swine
model, which produced improved cardiac performance, angiogenesis, and an attenuated
LV remodeling 8 weeks post-implantation. Neither of these 2 studies reported tumor
formation. Both ESC-derived cardiomyocytes and iPSC-derived cardiomyocytes have
been studied in nonhuman primates. Macaques received 1×10  human ESC-derived
cardiomyocytes 2 weeks post-MI via intramyocardial delivery.  After 3 months, the cells
continued to mature (albeit incompletely). Importantly, the cells engrafted, promoted
extensive remuscularization of the infarcted tissue, exhibited regular calcium transients
and no evidence of tumors or of cells outside the heart. All of these monkeys exhibited
arrhythmias.  Zhu et al  administered human PSC–derived cardiovascular progenitors
into the myocardium of male cynomolgus monkeys 30 minutes post-MI. Cells were
present 3 days later but not after 140 days, despite a modified immunosuppressive
regimen. Apoptosis was reduced and cardiac function improved by the cells. However, no
remuscularization was seen.

Combination Stem Cell Therapy
To improve therapeutic efficacy, a new approach is to combine cells. Small and large
animal studies have combined progenitor cells. Cells combined with angiogenic/growth
factors increased vasculogenesis and cell survival, reduced apoptosis, and enhanced
cardiac function.
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cardiac function.

Small Animal Studies
Ott et al  were the first to coinject skeletal myoblasts and BM-MNCs into the
myocardium of rats 7 days post-infarction. Eight weeks later, the combination group
demonstrated improved EF/LVEDD/LV end-diastolic volume, myotube formation, and
retention of BM-MNCs.  Intramyocardial injection of the same combination of cells into
canines 2 weeks post-infarction yielded similar results compared with either cell group
individually.  Quijada et al  created a fusion between murine MSCs and cardiac
progenitor cells, termed cardiac chimeras (CC). They tested the efficacy of CCs in a
mouse AMI model compared with the combination of CSC/MSCs or each cell type alone.
Four weeks post-injection, CC-treated animals showed enhancement of wall thickness.
Cardiac function was improved in the CC group at 6 weeks and in the MSC/CSC group at
18 weeks. Infarct size, engraftment, and persistent engraftment were noted in the CC
group when compared with MSC/CSC.

Large Animal Studies
The combination of MSCs and CSCs has been studied in swine. Intramyocardial injection
of human MSC and human CSCs was administered to immunosuppressed swine 14 days
post-MI. This combination produced a 2-fold reduction in scar size, 7-fold enhanced
engraftment, improved LV compliance and contractility when compared with individual cell
types 4 weeks later (Figure 2). The individual cell types produced significant improvements
compared with placebo-treated animals.  In a chronic ischemic, nonimmunosuppressed
swine model, autologous MSCs±CSCs were administered 3 months post-MI. EF, stroke
volume, cardiac output, and diastolic strain were all improved in the combination group
when compared with MSCs alone. Both cell-treated groups significantly improved scar
size, wall motion, and viable tissue when compared with placebo.  A similar study using
allogeneic MSCs and CSCs again showed that the cell combination produced greater
improvements in cardiac structure and function  at least in part by increasing cell
proliferation within the myocardium.
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Download figure | Download PowerPoint

Figure 2. Combination cardiac stem cell (CSC)/mesenchymal stem cell (MSC).
Preload, afterload, and contractility changes after human CSCs (hCSC) and human
MSCs (hMSCs). A, Left ventricular end-diastolic pressure (LVEDP) and (B) end-
diastolic volume (EDV) and afterload measured by (C) arterial elastance (Ea).
Combination hCSC/hMSC therapy improved contractility as measured by the (D)
maximal rate of pressure change during systole (dP/dtmax) and (E) preload
recruitable stroke work (PRSW), a preload-independent measure of stroke work.
There was no change in (F) systolic elastance (Ees), in any of the groups. All graphs
show pre-injection (2 weeks post–myocardial infarction [MI]) vs 4-week postinjection
values. Graphs represent mean±SEM. *P<0.05. Reprinted from Williams et al  with
permission. Copyright ©2013, the American Heart Association.

Paracrine Effects
Considering the reported limited engraftment of transplanted cells, the idea that stem cells
secrete factors that activate endogenous cells is particularly attractive.  This secretome
is frequently enhanced by pre-incubation under stressful conditions, such as hypoxia
further supports the paracrine hypothesis. Table lists some of the potential molecular
agents responsible for the paracrine effects. It is likely that a variety of different factors
contribute to the regenerative and protective effects. The recruitment of resident stem
cells from cardiac tissue or an increased homing of circulating progenitor cells derived
from BM is likely enhanced by secreted factors.

Cell-Free Medium
Studying stem cell–conditioned medium will help identify the secretome.  For a pig
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Studying stem cell–conditioned medium will help identify the secretome.  For a pig
study, MSCs derived from human ESCs were cultured in serum-free conditions and the
cell medium was collected and applied intravenously.  Three weeks post-MI, pigs
treated with conditioned medium showed reduced infarct size and preserved cardiac
function compared with the control group treated with nonconditioned medium. Capillary
density was higher, and collagen deposition in border and remote zones was lower in
animals receiving the conditioned medium. As mentioned above, (some of) the
cardioprotective effects of EPCs seem to be mediated by IGF-1.  Percutaneous
intramyocardial injection of the secretome from apoptotic peripheral blood mononuclear
cells decreased infarct size and infarct transmurality measured by cardiac magnetic
resonance imaging in a pig model of chronic LV dysfunction.

Extracellular Vesicles/Exosomes
Extracellular vesicles (EVs)/exosomes are membrane-bound structures containing a
variety of factors including short noncoding nucleic acids microRNAs and proteins.
EVs/exosomes have sparked intense interest as the potential mediators of cell-based
paracrine effects.  Exosomes purified from MSC-conditioned medium provide
cardioprotection in an MI mouse model.  CSC-derived exosomes recapitulate the major
effects of CSCs in both AMI and chronic MI mouse models.  Adamiak et al  recently
characterized murine iPSC-derived EVs which were enriched in miRNAs and proteins with
proangiogenic and cytoprotective properties. Importantly, iPSC-derived EVs provided
equal or greater therapeutic efficacy as iPSCs without the potential tumor formation.  As
described above, CDC-derived exosomes produced equivalent levels of cardiac repair as
did CDCs in a porcine model.  These exciting results await comprehensive clinical
evaluations.

Delivery Routes
While the search for the optimal cell type continues, so does the pursuit of the optimal
delivery method. The most common routes include intracoronary, intravenous, and
intramyocardial (transendocardial/transepicardial). Despite the various delivery methods,
cellular retention remains low.

Intracoronary delivery of cells is the most used approach in the clinical setting.
Relatively inexpensive and well tolerated, this approach can be used during an acute
ischemic event combined with coronary intervention.  Large animal studies on canines
and swine have proven the efficacy of this method.  However, arterial obstruction
may pose a risk with high cell doses, and its application is limited in the chronic ischemia
setting, secondary to the diffuse nature of the disease.  Intravenous delivery is
noninvasive and well tolerated in a swine model,  yet fairly inefficient, as most of the
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noninvasive and well tolerated in a swine model,  yet fairly inefficient, as most of the
cells are lost to other organs.

When accompanied by cardiac mapping, the transendocardial approach, although
invasive, delivers cells most accurately.  Multiple swine studies have demonstrated
improved cardiac function and reduced infarct size with this approach.  Caution
should be taken in the elderly with thinner myocardium as there have been reports of
ventricular perforation and cell clumping in areas of profound ischemia.

The transepicardial method requires invasive thoracotomy, but is commonly used
preclinically.  Under direct visualization, cells can be precisely injected into viable tissue
surrounding the scarred area. Any perforations or hemorrhage can be controlled
immediately. This delivery method produced improvements in EF, LV end-diastolic volume,
and LVESV compared with placebo in a sheep model 8 weeks post-injection.  Other
large animal studies have reported the benefits of this approach.  Drawbacks include
prolonged postoperative recovery, arrhythmias, embolization, and leakage of cells from
the injected sites as reported in a swine study.

Patches/Biomaterials
As discussed above, generally <10% of injected cells are available at the site of injury
within a few hours or days after delivery, and few cells actively engraft in the affected
tissue. This rapid cell loss represents a major issue not only by limiting engraftment but
also for maintaining paracrine effects, many of which function only locally.
Scaffolds/patches have been constructed from various biomaterials (gelatin, Matrigel, and
collagen) to mimic the extracellular matrix lost secondary to MI and help retain
transplanted cells. These biomaterials include epicardial patches, self-assembling
nanofibers, cell sheets, or injected gels which can be mixed with various cell types and
placed on the infarcted region.  Biomaterials need to fulfill many (sometimes
contradictory) criteria to be effective, including biocompatibility, biodegradability, provide
mechanical support, be an appropriate thickness, and allow for precise placement.  The
advent of 3-dimensional printing has expanded the availability and diversity of
biomaterials allowing for cell integration, vascularization, and thicker structures.

Conclusions and Future Directions
Ranging from in vitro discoveries of the activation and differentiation of stem cells to large
animal models mimicking human heart anatomy to culminating in clinical trials, stem cell
therapy has been both promising and progressive.  Here, we discussed promising
preclinical studies using a variety of stem cells introduced in different ways to treat a
diverse assortment of animals with cardiac diseases (Figure 3). These preclinical results
show that many types of cells are therapeutic, but we must continue to study more cell
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show that many types of cells are therapeutic, but we must continue to study more cell
types and use novel approaches, including combining different types of stem cells,
reinjecting cells, improving retention, and perhaps using the cell secretome rather than the
cell itself.

As with all models, there are caveats associated with current preclinical studies. (1) The
age of the animal is a crucial factor, with young healthy animals used for most studies.
However, in humans, HF is primarily associated with aging.  (2) The uniformity of animals
of a given strain and lack of comorbidities does not match human heterogeneity. (3) A lack
of standardized protocols with consistent end points and outcome parameters. What is
needed are multicenter randomized studies with a centralized core laboratory and blinded
analyses, as suggested by the National Heart, Lung and Blood Institute-sponsored
CAESAR (Consortium for Preclinical Assessment of Cardioprotective Therapies)
consortium  and the Working Group on Cellular Biology of the Heart of the European
Society of Cardiology.  (4) The different routes of injection influence therapeutic
efficacy.  Despite these caveats, critical interpretation of preclinical models is necessary
to move regenerative medicine forward.

MSCs have been the most studied cell type. They are widespread, immunomodulatory,
and immunoevasive and secrete exosomes and growth factors. Despite their
demonstrated benefits in acute, chronic, and DCM, complete recovery using MSCs alone
has not occurred. Newer sources of stem cells, including UC/Wharton’s jelly, have shown
potential and a different transcriptome.  Stem cells isolated from the heart, including c-
kit  CSCs and cardiospheres improve cardiac function and scar size in animal models.
Pluripotent cells and their derivatives have similarly shown some promise.

The combination of MSCs and c-kit  CSCs has proven efficacious in large animal
studies  and is being translated to the clinical arena (in the Transendocardial
Autologous Cells [hMSC] or [hMSC] and [hCSC] in Ischemic Heart Failure Trial [TAC-HFT-
II]; NCT02503280). Repeated MSC injections can be more effective than a single
administration,  whereas Terrovitis et al  followed the transepicardial injection of CSCs
with a fibrin-based sealant in rats to enhance cellular retention. Cell-free systems,
particularly microvesicles/exosomes, with their collection of growth factors, microRNAs,
etc, may represent the next frontier either alone or in combination with cells. We anticipate
that novel preclinical approaches will provide more effective treatments and will pave the
way for future clinical trials. The current standard of care for HF is to prescribe a cocktail
of medications for patients to take for the remainder of their lives. The anticipated ability
of stem cells to repair a compromised heart means that patients may reduce their
medications and live active and healthy lives.
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Download figure | Download PowerPoint

Figure 3. Different administration routes and cell types for the treatment of
heart disease. The cell types listed under each delivery method refer only to those
referenced (superscripted number) in this review. AdSC indicates adipose-derived
stem cell; BM, bone marrow; CDC, cardiosphere-derived cell; CMG, cardiomyogenic
cell; CSC, cardiac stem cell; DCM, dilated cardiomyopathy; iPSC, induced
pluripotent stem cell; MI, myocardial infarction; MNC, mononuclear cell; MSC,
mesenchymal stem cell; and UC, umbilical cord. Adapted from Golpanian et al
with permission. Copyright ©2016, the American Physiological Society.
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AdSC

AMI acute myocardial infarction

BM bone marrow

BM-
MNC

bone marrow mononuclear cell

BM-
MSC

bone marrow-derived mesenchymal stem cell

CC cardiac chimeras

CDC cardiosphere-derived cell

CSC cardiac stem cell

DCM dilated cardiomyopathy

eGFP enhanced green fluorescent protein

EPC endothelial progenitor cell

ESC embryonic stem cell

EV extracellular vesicle

4/20/20, 5:26 AM
Page 24 of 58



EV extracellular vesicle

HF heart failure

IGF-1 insulin-like growth factor-1

iPSC induced pluripotent stem cell

LAD left anterior descending

Lin lineage

LVEF left ventricular ejection fraction

MI myocardial infarction

MSC mesenchymal stem cell

TACTICS
Transnational Alliance for Regenerative Therapies in
Cardiovascular Syndromes

TGF-β1 transforming growth factor-β1

TNF-α tumor necrosis factor-α
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UC umbilical cord

VEGF vascular endothelial growth factor
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