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Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by a progressive and extensive
loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and their terminals in the stri-
atum, which results in debilitating movement disorders. This devastating disease affects over 1 million individ-
uals in the United States and is increasing in incidence worldwide. Currently available pharmacological and
surgical therapies ameliorate clinical symptoms in the early stages of disease, but they cannot stop or reverse
degeneration of DA neurons. Stem cell therapies have come to the forefront of the PD research field as promising
regenerative therapies. Themajority of preclinical stem cell studies in experimental models of PD are focused on
the idea that stem cell-derivedDAneurons could be developed for replacement of diseased neurons. Alternative-
ly, our studies and the studies from other groups suggest that stem cells also have the potential to protect and
stimulate regeneration of compromised DA neurons. This review is focused on strategies based on the therapeu-
tic potential for PD of the neurotrophic and neuroregenerative properties of a subclass of stem cells, mesenchy-
mal stem cells (MSCs).
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Introduction

Mesenchymal stem cells (MSCs) were first isolated and defined by
Friedenstein and co-workers as plastic-adherent, colony-forming-unit
fibroblastic cells (CFU-F) (Friedenstein et al., 1966, 1968, 1970). Later,
these cells were named “marrow stromal cells” due to their possible
use as a feeder layer for hematopoietic stem cells (Eaves et al., 1991).
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It has been shown that these cells are multipotent with potential to dif-
ferentiate into different cells of mesodermal lineage and, since they ful-
fill the minimal criteria of stem cells in more recent studies, they are
now known as “mesenchymal stem cells” or “multipotent mesenchy-
mal stromal cells” (Caplan, 1991; Horwitz et al., 2005; Pittenger et al.,
1999). Bone marrow is the primary source of MSCs, but they can also
be isolated from various adult and neonatal tissues, such as adipose tis-
sue, peripheral blood, dental pulp, amnion, placenta, umbilical cord and
cord blood (Hass et al., 2011;Waddington et al., 2009). It also is easy to
procureMSCs from different adult tissues and these cells aremore plas-
tic than initially thought since they can transdifferentiate into epithelial,
endothelial, and neuronal cells (Brazelton et al., 2000; Dezawa, 2006;
Dezawa et al., 2004; Jiang et al., 2002; Spees et al., 2003; Sueblinvong
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et al., 2008; Yue et al., 2008). These characteristics have prompted great
interest in the therapeutic potential of MSCs for different diseases, in-
cluding neurodegenerative disorders such as Parkinson's disease (PD).

PD is a progressive neurodegenerative disease with clinical symp-
toms of tremor, muscle rigidity, bradykinesia and postural instability.
These motor deficits are the consequence of a symptomatic threshold
60% or greater loss of DA-synthesizing neurons in the substantia nigra
pars compacta (SNpc) and their terminals in the striatum. Symptoms
become more pronounced as the disease progresses due to the contin-
uous degeneration of DA neurons. Existing pharmacological and surgi-
cal therapies ameliorate clinical symptoms in the early stages of PD,
but as the disease progresses these become less effective and are often
accompanied by undesirable side effects of increasing drug doses.
None of the available therapies reverse or stop further degeneration of
DA neurons pointing to an immense need for a more effective therapy.
Diverse therapeutic avenues, such as novel pharmaceuticals targeting
DA and other neurotransmitter systems, neurotrophic factors, gene
therapies, alteration of ion channels and stem cell approaches, all hold
potential for ameliorating the disease process (Bohn, 2000; Chan et
al., 2007; Deierborg et al., 2008; Dyson and Barker, 2011; Lindvall and
Kokaia, 2009; Parish and Arenas, 2007; Wakeman et al., 2011). Due to
the focused loss of DA neurons, PD is particularly suitable for cell and
ex vivo gene therapy. It has been revealed that stem cells from different
sources (Barzilay et al., 2008; Dezawa et al., 2004; Hayase et al., 2009;
Kan et al., 2007a; J.H. Kim et al., 2002; Kriks et al., 2011; Nishino et al.,
2000; Perrier et al., 2004; Roy et al., 2006; Sakurada et al., 1999;
Sanchez-Pernaute et al., 2005; Trzaska et al., 2007; Yang et al., 2004), in-
duced pluripotent stem cells (iPS) (Cai et al., 2010; Chang et al., 2012;
Cooper et al., 2010; Ma et al., 2011; Rhee et al., 2011), and even fibro-
blasts (Caiazzo et al., 2011; Kim et al., 2011; Liu et al., 2012; Pfisterer
et al., 2011; Wernig et al., 2008) can give rise to DA neurons under
certain culture conditions. Grounded on these findings, cell therapy ap-
proaches for PD have been focusedmainly on the ability of stem cells to
differentiate into DA-producing cells that can replace diseased DA neu-
rons (for reviews, see Ganz et al., 2011; Lindvall and Kokaia, 2009).
However, several studies, including studies from our group, have
shown that stem cells can protect and/or stimulate regeneration in
host-damaged DA neurons (Bouchez et al., 2008; Ebert et al., 2008;
Glavaski-Joksimovic et al., 2009, 2010; Park et al., 2008; Shintani et al.,
2007; Yasuhara et al., 2006). These studies reveal an alternative strategy
for applying stem cell research to PD. Despite the old standing dogma
that the adult brain cannot be repaired, regeneration of DA neurons in
mature brains in animal models of PD was first revealed following
grafting of adrenal medulla tissue into a mouse model of PD (Bohn et
al., 1987). This discovery is built on observations of Aguayo and
co-workers who showed that neurons in the adult brain had the poten-
tial to regrow if provided with a suitable substrate (Ling et al., 2009;
Ling and Ecklund, 2011). Other studies in animal PD models bolstered
the concept that there is potential for recovery of DA neurons in adult
rodent and non-human primate brains as elicited by delivery of growth
factor proteins or genes (Bjorklund et al., 1997, 2000; Choi-Lundberg et
al., 1997; Gash et al., 1996; Kearns and Gash, 1995; Kordower et al.,
2000; Oiwa et al., 2002; Rosenblad et al., 1999), or grafting of primary
fetal brain tissue, amnion tissue, or adrenal medulla (Bankiewicz et al.,
1990, 1991, 1994; Bohn et al., 1987). Degeneration of DA neurons is
also reversible in aged non-human primates following trophic factor
gene therapy (Eberling et al., 2009; Kordower et al., 2000). When con-
sidered together, the regenerative effects demonstrated in these studies
suggest that the degeneration of DA neurons in humans afflicted with
PD may also be reversed if a favorable environment is provided. It
remains to be proven that diseased human DA neurons will respond
similarly to those in animal models of PD. Some positive data from re-
cent clinical trials, albeit variable, suggest that this may be possible
(Eberling et al., 2008; Gill et al., 2003; Lang et al., 2006; Marks et al.,
2008, 2010; Mittermeyer et al., 2012; Nutt et al., 2003; Patel et al.,
2005; Slevin et al., 2005; Venkataramana et al., 2010).
With regard to stem cell approaches for PD, there is a growing body
of evidence that naive and genetically modified MSCs can provide a fa-
vorablemilieu and evoke protection and repair of damaged DA neurons
(Blandini et al., 2010; Bouchez et al., 2008; Chao et al., 2009; Cova et al.,
2010; Glavaski-Joksimovic et al., 2009, 2010; Park et al., 2008, H.J. Park
et al., 2012; Shintani et al., 2007). This review will provide an overview
of those studies, and discuss possible mechanisms that underlie
MSCs-induced neuroregeneration, as well as the clinical advantages of
using this stem cell source.

Potential of MSCs for PD neuroregenerative therapy

MSCs possess several characteristics that make them attractive mo-
dalities for use as a novel therapeutic for neurodegenerative disorders,
including PD. MSCs can be easily procured and expanded, without the
use of other supportive cells. Importantly, MSCs are not burdened
with the ethical issues associated with embryonic stem cells and
stem cells of a fetal origin. In addition, they are characterized by being
able to differentiate along several lineage pathways (Jiang et al., 2002;
Nagai et al., 2007; Pittenger et al., 1999). Further, MSCs have been
shown in studies of brain injury to migrate to sites of injury (Deng et al.,
2011; Hellmann et al., 2006; Ji et al., 2004) and to have immunomodula-
tory and anti-inflammatory properties (Fibbe et al., 2007; Prockop and
Oh, 2012, reviews). Also, unlike stem cells derived from other sources
and iPS (Amariglio et al., 2009; Bjorklund et al., 2002; Brederlau et al.,
2006; Duinsbergen et al., 2009; Kooreman and Wu, 2010; Morizane
and Takahashi, 2012; Roy et al., 2006), MSCs have a low probability of
being tumorigenic and a recent open-label phase I study demonstrated
the safety of MSCs transplantation into brains of PD patients
(Venkataramana et al., 2010). MSCs are also unique compared to
other stem cells in that they could theoretically be utilized for personal-
ized medicine in which MSCs for brain engraftment would be collected
from the individual to receive grafted cells in order to avoid immune re-
sponses and graft rejection (Kan et al., 2007b). These cells are also ame-
nable to genetic modification, which further increases their therapeutic
potential (Hodgkinson et al., 2010; Reiser et al., 2005).

Many studies in PD animal models have verified that bone
marrow-derived MSCs (BMSCs) have the capacity to protect and regen-
erate damaged DA neurons (Blandini et al., 2010; Bouchez et al., 2008;
Chao et al., 2009; Cova et al., 2010; Danielyan et al., 2011; Li et al.,
2001b; Offen et al., 2007; Park et al., 2008; H.J. Park et al., 2012;
Pavon-Fuentes et al., 2004; Wang et al., 2010). Li et al. (2001b) were
among the first who demonstrated behavioral recovery after BMSCs
transplantation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-inducedmousemodel of PD. Further, increased viability andmi-
gration of transplanted BMSCs were observed after 6-hydroxydopamine
(6-OHDA)-induced loss of DA neurons (Hellmann et al., 2006). In addi-
tion, BMSCs grafted into the striatum (Blandini et al., 2010; Cova et al.,
2010; Pavon-Fuentes et al., 2004), intravenously (Wang et al., 2010) or
intranasally (Danielyan et al., 2011) delivered BMSCs were shown to
exert neuroprotective effects against nigrostriatal degeneration and to
improve motor function in 6-OHDA lesioned rats. Human BMSCs also
have a protective effect on the progressive loss of DA neurons induced
by carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132) in vitro and in
vivo in rat (Park et al., 2008). Recent studies (Blandini et al., 2010;
Chao et al., 2009; Cova et al., 2010; Danielyan et al., 2011; Kim et al.,
2009; Park et al., 2008; H.J. Park et al., 2012) suggest that a number of
mechanisms are involved in the regenerative effects ofMSCs, as discussed
below.

Neurally-induced BMSCs also have been tested for therapeutic effects
in PD models by several groups. Ye and co-workers (Ye et al., 2007b)
compared the effect of naive BMSCs and BMSCs differentiated into
nestin-positive cells transplanted in a 6-OHDA fully lesioned rat PD
model. Although both naive and differentiated BMSCs evoked behavioral
recovery, the effect of the differentiated cells was more pronounced.
However, in studies from Bouchez et al. (Bouchez et al., 2008), BMSCs
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grown under standard conditions and BMSCs grown in neuronal differ-
entiation medium were observed to have similar effects on behavioral
recovery in a 6-OHDA partially lesioned rat PD model. Offen and col-
leagues (Offen et al., 2007) also used BMSCs that were induced to
adopt neural morphology and express markers of DA neurons, such as
tyrosine hydroxylase (TH). When these cells were transplanted in a
6-OHDA mouse model of PD, most of the transplanted cells survived in
striatum, expressed TH and behavioral recovery was observed (Offen
et al., 2007). A DA-induced subpopulation of human MSCs combined
with pharmacologically active microcarriers grafted in a rat PD
model also led to protection/repair of the nigrostriatal pathway
and behavioral recovery (Delcroix et al., 2011). In addition, micrografted
bone marrow derived neuroprogenitor-like cells were shown to in-
duce rejuvenation of host DA neurons in 6-OHDA partially lesioned
rat brain (Glavaski-Joksimovic et al., 2009; Fig. 1) and to evoke func-
tional recovery in 6-OHDA fully lesioned rat brain (Dezawa et al.,
2004).

MSCs isolated from adipose tissue and umbilical cord have shown
beneficial effects in PD models as well. McCoy and co-workers demon-
strated that naive and neurally-induced adipose derived MSCs exert
neuroprotective effects against 6-OHDA-induced DA neuron death,
and they speculate that this was achieved through secretion of trophic
factors (McCoy et al., 2008). In addition, MSCs isolated from umbilical
cord exhibit neuroprotective and neuroregenerative effects in 6-OHDA
(Fu et al., 2006; Mathieu et al., 2012; Weiss et al., 2006) and rotenone
lesioned hemiparkinsonian rats (Xiong et al., 2010).

Possible underlying mechanisms in MSCs-evoked repair of DA neurons

Transdifferentiation and fusion as minor factors in MSCs-evoked repair of
DA neurons

Although functional recovery following MSCs transplantation has
been observed in numerous animal models of neurodegenerative
Fig. 1. Effect of human Notch-induced BMSCs (SB623 cells) grafts on recovery of DA fibers i
1 week after the lesion and rats were euthanized at 4 weeks. A–B, sections stained for TH-I
(arrows) around SB623 graft sites in two different rats that received SB623 cells in a concen
control rats, only sparse TH-IR fibers were present around the injection site (arrow). In pan
recovery of host DA fibers around grafted SB623 cells as visualized by hNuMA-IR and TH-
SB623 cells (marked with arrows) that co-express hNuMA (red) and Hoechst nuclear (blue)
of 20,000 cells/μl one week after lesioning with 6-OHDA. E, overlay of hNuMA-IR (red) and
rounding the SB623 cell graft, but no overlap of hNuMA-IR with TH-IR, implying a host origin
in the same section. Bars in A–F = 100 μm.
Panels are reproduced from Glavaski-Joksimovic A. et al., Cell Transplant 18 (2009) 801–81
disease, the underlying mechanisms are largely unknown. MSCs isolat-
ed from different tissues are quite versatile and can adopt morphologi-
cal and phenotypic characteristics of neuronal cells under various
culture conditions. The majority of the protocols for MSCs neuronal in-
duction utilize different combinations of chemicals, growth factors
and signaling molecules (Anghileri et al., 2008; Choong et al., 2007;
Chu et al., 2004, 2006; Deng et al., 2001; Fu et al., 2008; B.J. Kim et al.,
2002; Long et al., 2005; Suzuki et al., 2004; Tao et al., 2005; Wang et
al., 2005; Woodbury et al., 2000). The potential of MSCs to differentiate
into neurons also can be enhanced by co-culture with glial, neuronal,
and neuronal stem cells (Alexanian, 2005; Alexanian et al., 2008; Jiang
et al., 2002, 2003; Sanchez-Ramos et al., 2000; Wislet-Gendebien et
al., 2003, 2005a), or by astrocyte or neuronal conditioned medium
(Joannides et al., 2003; Rivera et al., 2006). In addition, MSCs neural
transdifferentiation can be boosted by over-expression of certain
genes such as noggin (Kohyama et al., 2001), notch intracellular
domain (NICD) (Dezawa et al., 2004; Fig. 2), and brain-derived
neurotrophic factor (BDNF) (Zhao et al., 2004), genes that are important
for neural development and function. Similarly, MSCs differentiation into
DA neurons can be achieved through different protocols based on
chemical induction, gene transfection, co-culturing and use of condi-
tioned medium (Barzilay et al., 2009; Datta et al., 2011; Dezawa et al.,
2004; Fu et al., 2006; Guo et al., 2005; Hermann et al., 2004; Jiang et
al., 2003; Kan et al., 2007a; Pacary et al., 2006; Trzaska et al., 2009;
Zhang et al., 2008). However, the transdifferentiation potential of MSCs
to neurons, while intriguing, remains controversial and needs further
evaluation. A few studies have raised doubts regarding ability of MSCs
to transdifferentiate into neurons, suggesting instead that MSCs
exposed to chemical induction adopt neuronal-like morphology and
express various neural specific markers due to cellular toxicity, cell
shrinkage and cytoskeletal alterations (Bertani et al., 2005; Lu et al.,
2004; Neuhuber et al., 2004). Moreover, naive MSCs have been reported
to express the neuroprogenitor marker nestin (Tondreau et al., 2004;
n the Fisher 344 rat striatum lesioned with the neurotoxin 6-OHDA. Cells were grafted
R using a nickel-enhanced diaminobenzidine method (black). Note dense TH-IR fibers
tration of 20,000 cells/μl one week after lesioning with 6-OHDA. C, in vehicle injected
els A through C, brown cells show macrophages or dead cells in the needle track. D–F,
IR. D, overlay of hNuMA (red) and Hoechst nuclear staining (blue) showing surviving
staining at 3 weeks in the striatum of a rat that received SB623 cells in a concentration
TH-IR (green) in the same section shown on panel D. Note recovery of TH-IR fibers sur-
of the TH-IR fibers. F, overlay of the hNuMA-IR (red), Hoechst (blue) and TH-IR (green)

4, with the permission of Cognizant Communication Corporation.



Fig. 2. Analysis of TF-MSCs (5 days after trophic factor induction). A–C, phase contrast of TF-MSCs from rats (A and B) and humans (C). Bars in A = 200 μm, and B and C = 50 μm. D–F
and H–J, immunocytochemical analysis of neuronal and glial markers in rat (F, and H–J) and human (D and E) TF-MSCs. MAP-2ab (D), neurofilament-M (E), and β-tubulin isotype 3 (F)
were detected. None of the cells were reactive to GFAP (H), GalC (I), and O4 (J). G, the Brd-U labeling of rat TF-MSCs. MAP-2ab-positive cells (green) did not incorporate BrdU (red),
whereas negative cells were occasionally incorporated with BrdU. Bars in D–J = 100 μm. K, Western blot analysis of MAP-2ab and GFAP rat samples. Brain, positive control; TF-MSCs.
β-tubulin (tub) as a loading control. L–Q, patch clamp. K + current increased with trophic factor induction up to approximately 1600 pA and 4000 pA in rat (L) and human
(M) TF-MSCs, respectively. N, phase contrast of human TF-MSCs recorded in (M). O, voltage-gated inward current recorded in rat BDNF + NGF-treated TF-MSCs. A series of Na current
to show the process of block by TTX. Capacity current was blanked. P, action potentials from rat BDNF + NGF-treated TF-MSCs; subthreshold, threshold, and suprathreshold current in-
jections were made. Q, immunocytochemistry of sodium channel (green). Bar = 30 μm. R, relative promoter activities of NeuroD and GFAP in rat MSCs, N-MSCs, and TF-MSCs.
Figs. are reproduced from Dezawa M. et al., J Clin Invest 113 (2004) 1701–1710, with the permission provided by American Society for Clinical Investigation Copyright Clearance Center.
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Wislet-Gendebien et al., 2003, 2005b), as well as a variety of neuronal
genes and proteins, including markers for DA neurons (Arnhold et al.,
2006; Blondheim et al., 2006; Deng et al., 2006; Kramer et al., 2006;
Montzka et al., 2009; Tondreau et al., 2004; Woodbury et al., 2002;
Zhang and Alexanian, 2012), which further complicate the evaluation
of MSCs to transdifferentiate. However, observations of cytokine-
induced MSCs morphological and phenotypic changes by time-lapse
microscopy suggest that these result from active and dynamic cellular
processes, not simply from culture artifacts (Tao et al., 2005). The ability
of MSCs to transdifferentiate into functional neurons is further bol-
stered by demonstrations that neurally-induced MSCs express calcium,
potassium and sodium channels, can generate action potentials, and
support synaptic transmission (Cho et al., 2005; Dezawa et al., 2004;
Fox et al., 2010; Jang et al., 2010; Mareschi et al., 2006; H.W. Park et
al., 2012; Preston et al., 1996; Tondreau et al., 2008; Wislet-Gendebien
et al., 2005a; Zeng et al., 2011). Several in vivo studies also demonstrat-
ed the capacity of MSCs to differentiate into neuronal cells following
grafting, but the number of observed MSCs-derived neurons and
glial cells was rather small and did not restore a normal tissue
cytoarchitecture (Alexanian et al., 2008; Chen et al., 2001; Dezawa et
al., 2004; Kopen et al., 1999; Li et al., 2001a; Lu et al., 2006; Mezey et
al., 2003; Mimura et al., 2005; Park et al., 2008; Zhao et al., 2002). It
remains uncertain whether MSCs-derived neurons can form synaptic
connectionswith host cells or be properly incorporated into host neuro-
nal circuitries. It also has been suggested that grafted MSCs fuse with
host cells, including neurons (Alvarez-Dolado et al., 2003; Terada et
al., 2002; Vassilopoulos et al., 2003; Wang et al., 2003), although this
appears to be a very a rare phenomenon (Colletti et al., 2009;
Lopez-Iglesias et al., 2011; Terada et al., 2002). In summary, it is unlikely
that either transdifferentiation or fusion of MSCs with host neurons is a
major factor contributing to MSCs-induced functional recovery. Rather,
the experimental data imply that the neurological improvement ob-
served after MSCs transplantation into the injured or ischemic brain is
achieved through MSCs secretion of growth factors and cytokines that
create a favorable environment for regeneration and facilitate intrinsic
restorative processes (Kim et al., 2010; Li and Chopp, 2009; Li et al.,
2002; Parr et al., 2007; Pisati et al., 2007). Similarly, several studies sug-
gested that neuroprotective and restorative effects of MSCs in PD animal

image of Fig.�2
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models (Fig. 3.) are achieved mainly through secretion of growth factors
and cytokines, enhancing endogenous restorative processes, immuno-
modulatory and anti-inflammatory effects (Blandini et al., 2010;
Bouchez et al., 2008; Chao et al., 2009; Cova et al., 2010; Kim et al.,
2009; Park et al., 2008; H.J. Park et al., 2012; Shintani et al., 2007).

MSCs paracrine factors and DA neuron protection and repair
MSCs have been reported to secrete an array of growth factors and

cytokines, including BDNF, nerve growth factor (NGF), glial-cell-line-
derived neurotrophic factor (GDNF), fibroblast growth factor 2 and 8
(FGF2 and FGF8), hepatocyte growth factor (HGF), vascular endothelial
growth factor (VEGF), platelet derived growth factor (PDGF), ciliary
neuronotrophic factor (CNTF), insulin-like growth factor 1 (IGF-1),
neurotrophin-3 (NT-3) and stromal cell-derived factor-1 (SDF-1)
(Arnhold et al., 2006; Bouchez et al., 2008; Chen et al., 2002; Crigler et
al., 2006; Croitoru-Lamoury et al., 2007; Honczarenko et al., 2006;
Jiang et al., 2010; Lattanzi et al., 2011; Li et al., 2002; Pisati et al., 2007;
Shintani et al., 2007; Tate et al., 2010;Wakabayashi et al., 2010;Wilkins
et al., 2009). MSCs also express neurotrophin low-affinity nerve growth
factor receptors (NGFRs) and high-affinity tyrosine kinase (trk) recep-
tors and can respond to neuronal tissue environment with both
neurotrophin protein release and neurotrophin receptor expression
(Labouyrie et al., 1999; Pisati et al., 2007). Some growth factors secreted
from MSCs, including GDNF, BDNF, bFGF, and CNTF, elicit neurotrophic
and neuroprotective effects on DA neurons (Chadi et al., 1993;
Choi-Lundberg et al., 1997; Engele and Bohn, 1991; Ferrari et al., 1989;
Hagg and Varon, 1993; Hyman et al., 1991; Kearns and Gash, 1995; Lin
et al., 1993; Magal et al., 1993; Sauer et al., 1993). Further, it has been
shown that following grafting into parkinsonian rat brains, MSCs differ-
entiate into glial cells that can release different neurotrophic factors
protecting against the neurotoxin, 6-OHDA (Blandini et al., 2010). In
the same study, increased expression of GDNF was observed in the
SNpc of grafted rats, and authors speculated that glial differentiation of
MSCs particularly reinforced GDNF secretion, which led to the DA
neuroprotection (Blandini et al., 2010). Studies in which human MSCs
Fig. 3. Schematic representation of possible mechanisms that are involved in MSCs therapeutic e
mainly through secretion of different growth factors, cytokines, extracellular matrix proteins (EC
(antiapoptotic effect) and create a favorable environment for neuronal regeneration. Through re
restorative processes such as neurogenesis and angiogenesis. Immunomodulatory and anti-infl
neurons. Compared to paracrine effects, capacity of MSCs to transdifferentiate into neurons and/o
were grafted into a mouse or rat brain respectively, demonstrated that
graftedMSCs can also stimulate expression of endogenous neurotrophic
factors as demonstrated by immunostaining and ELISAs for mouse
neurotrophins (Munoz et al., 2005), or by quantitative real-time
RT-PCR and Western blot analysis for rat neurotrophins (Wakabayashi
et al., 2010). In addition, transplantation of undifferentiated and
neuronal-primed MSCs into lesioned rat striatum can evoke an in-
flammatory response, which involves activation of host microglia/
macrophages and astrocytes (Khoo et al., 2011). These activated glial
cells may produce trophic factors, such as BDNF, GDNF, NGF, NT-3,
interleukin-1ß and CNTF, that stimulate DA neuronal regeneration
(Asada et al., 1995; Batchelor et al., 1999; Chen et al., 2006; Ho and
Blum, 1997; Schaar et al., 1993; Wang et al., 1994). Thus, it is presum-
able that growth factors secreted from grafted MSCs and stimulated
host cells are implicated in the therapeutic effects of MSCs in different
animal models of PD. In this regard, it has been shown that
MSCs-secreted growth factors up-regulate TH gene expression and DA
content in rat embryonic ventral mesencephalic cells in vitro (Jin et
al., 2008). Similarly, Shintani and co-workers have shown that MSCs
derived-conditioned medium (MSCs-CM) significantly decreases the
DA neuronal death after serum deprivation or exposure to the neuro-
toxin 6-OHDA (Shintani et al., 2007). In addition, pretreatment of
embryonic DA neurons with MSCs-CM increases their survival after
grafting in a rat model of PD, implying that MSCs secrete diffusible fac-
tors that promote survival of DA neurons (Shintani et al., 2007). Also,
the ability of MSCs to induce survival and neurite outgrowth in the
SH-SY5Y neuroblastoma cell line has been shown to correlate with
the level of BDNF and to be partially inhibited by a BDNF antibody
(Crigler et al., 2006). In vivo, studies also suggest the involvement of
growth factors in the observed increases in DA levels and TH immuno-
reactivity, and in the recovery frommotor deficits in PD animal models
after MSCs transplantation (Bouchez et al., 2008; Park et al., 2008). In
addition, a prominent recovery of DA functionwas observed after trans-
plantation of MSCs that were directed in vitro toward neurotrophic
factor-secreting cells (Bahat-Stroomza et al., 2009; Sadan et al., 2009;
ffects for PD. MSCs can protect and/or stimulate regeneration in host-damaged DA neurons,
M), and neuro-regulatory molecules that have the capacity to decrease loss of DA neurons
lease of paracrine factors, MSCs are also able to affect the host tissue and facilitate intrinsic
ammatory properties of MSCs are also implicated in their ability to protect and repair DA
r fuse with the host neurons is in less extent involved in their beneficial effects for PD.
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Somoza et al., 2010). In our studieswith Notch-induced humanMSCs in
a rat model of PD, we observed rejuvenation of host DA neurons al-
though long term survival of grafted cells was very limited, further
suggesting that grafted cells initially secrete trophic factors and evoke
endogenous restorative mechanisms (Glavaski-Joksimovic et al.,
2009). Since the grafted cells did not survive, there are two possible ex-
planations for the observed increases in host TH-immunoreactive (IR)
fibers in striatum following grafting of naive, neurally-induced and
Notch-induced MSCs (Bouchez et al., 2008; Glavaski-Joksimovic et al.,
2009; Park et al., 2008), either an up-regulation of TH expression in
existing host fibers or de novo fiber growth from host DA neurons. It
is also feasible that grafted MSCs decrease DA neuronal loss through
their anti-apoptotic effects. In this respect, a decrease in apoptotic
markers and an increase in neuronal survival have been demonstrated
following MSCs transplantation in ischemic and injured brains (Kim et
al., 2010; Li et al., 2002, 2010). Moreover, in rats treated with MG-132,

image of Fig.�4
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a proteasome inhibitor that causes progressive loss of DA neurons, ad-
ministration of human MSCs significantly ameliorates the declines in
TH-IR cells and caspase-3 activity (Park et al., 2008). In addition, a
recent study from Wang and co-workers demonstrated that the
neuroprotective effect of MSCs on 6-OHDA exposed DA neurons is at
least in part mediated through an anti-apoptotic action of SDF-1
(Wang et al., 2010). It also has been suggested that MSCs anti-
apoptotic effects could be achieved through secretion of VEGF, HGF
and BDNF, all of which increase the levels of the pro-survival factor
Akt (Lu et al., 2011).

Besides growth factors, MSCs express various cytokines and potent
neuro-regulatory molecules that also are known to promote neuronal
survival and regeneration (Crigler et al., 2006; Tate et al., 2010). MSCs
also produce extracellular matrix proteins (ECM) that can support neu-
ral cell attachment, growth, neuritogenesis and functional restoration
(Aizman et al., 2009; Lai et al., 2010; Zhao et al., 2002). Notch-induced
MSCs also express ECM (Aizman et al., 2009) and this might be impli-
cated in the rejuvenation of host DA neurons observed in our studies
in 6-OHDA partially lesioned PD rat model (Glavaski-Joksimovic et al.,
2009).
MSCs and DA neuron repair through interaction with host cells. In addi-
tion to their effects on host DA neurons, grafted MSCs have been
shown to affect endogenous neural stem cells (NSCs), glial cells and
blood vessels through release of paracrine factors, which further
contributes to the neuronal tissue repair and functional recovery.

In vitro studies have shown that MSCs provide signals that promote
NSCs neuronal and glial differentiation (Bai et al., 2007; Robinson et al.,
2011). In a particularly interesting study, Munoz and co-workers ob-
served that transplantation of human MSCs into mouse hippocampus
stimulated proliferation, migration and differentiation of the endoge-
nous NSCs (Munoz et al., 2005). More recent studies also demonstrated
increased neurogenesis after intrahippocampal and intracerebroventric-
ular MSCs transplantation (Coquery et al., 2012; Tfilin et al., 2010). It is
proposed thatMSCs affect endogenous NSCs through increase in expres-
sion of NGF, VEGF, CNTF, FGF-2 and the polycomb family transcriptional
repressor BMI-1 in the hippocampus (Munoz et al., 2005). Another pos-
sibility is that MSCs affect endogenous NSCs indirectly through stimula-
tion of astrocytes to secrete growth factors, such as BDNF andNGF,which
increase neurogenesis (Li et al., 2002; Munoz et al., 2005; Song et al.,
2002). Studies of Kan and colleagues reveal that transplantation of
human MSCs into the subventricular zone (SVZ) of intact mice housed
in an enriched environment stimulates the proliferation and maturation
of endogenous progenitors toward the neuronal phenotype (Kan et al.,
2011). In addition, it has been shown that intracerebral MSCs adminis-
tration and intravenous MSCs administration increase proliferation and
differentiation of endogenousNSCs after stroke and traumatic brain inju-
ry (Bao et al., 2011; Li et al., 2002, 2010; Mahmood et al., 2004;
Pavlichenko et al., 2008). Recent studies reveal thatMSCs have similar ef-
fects on endogenous NSCs in animal models of PD (Cova et al., 2010; H.J.
Park et al., 2012). Cova and co-workers showed that transplantation of
human MSCs in 6-OHDA lesioned rat striatum increases neurogenesis
in SVZ, while SVZ astrogenesis was not observed (Cova et al., 2010).
Fig. 4. Effect of non-transduced and GDNF and/or hrGFP transduced SB623 cell grafts on r
lentiviral transduction more than 95% of SB623 cells express GFP (green) (A). In addition ce
A and B images. Note that almost all cells display green GFP fluorescence and red hNA stainin
GDNF into the culture medium as determined by ELISA. Undiluted medium samples (pink sq
(yellow triangles) to be in the linear range of standards (blue diamonds). E, GDNF and/or h
nized at 5 weeks post-grafting. The majority of rats that received GDNF transduced SB623
compared to post lesion rotations (#; p b 0.01) and compared to control rats (*; p b 0.03
SB623 cells was observed using nickel-enhanced DAB staining (black). GDNF-IR (arrows) ob
stained for TH-IR using nickel-enhanced DAB staining (black). Note dense TH-IR fibers (arro
TH-IR fibers in a rat that received GFP-GDNF transduced SB623 cells in H. I, in vehicle injecte
panels F and G through I, brown cells represent macrophages or dead grafted cells in the n
Panels reproduced from Glavaski-Joksimovic A. et al., J Neurosci Res 88 (2010) 2669–2681,
They proposed that reciprocal influences between grafted MSCs and en-
dogenous NSCs are important for the observed rescue of DA neurons
(Cova et al., 2010). In addition, studies from Park et al. show that trans-
plantation of human MSCs in an MPTP mouse model of PD augments
neurogenesis both in SVZ and SN and increases differentiation of NSCs
toward DA neurons (H.J. Park et al., 2012). These authors suggest that
the effects of grafted MSCs on endogenous NSCs could be achieved
through EGF secretion and an increased expression of EGF receptor in
the SVZ (H.J. Park et al., 2012).

A significant feature of the regenerative effects of MSCs is their abil-
ity to promote endothelial cell proliferation and angiogenesis (Kaigler
et al., 2003; Kinnaird et al., 2004a). The MSC's effect on blood vessels
may be mediated through angiogenic factors, such as VEGF, FGF, HGF,
SDF-1, angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and matrix
metalloproteinase-1 (MMP-1) (Burdon et al., 2011; Kinnaird et al.,
2004a, 2004b; Tate et al., 2010). The formation of new blood vessels
following MSCs transplantation might be associated with the MSCs
neuroregenerative effect since angiogenesis and neurogenesis are
coupled processes (Palmer et al., 2000; Teng et al., 2008). Supporting
this particular point are studies showing an increase in angiogenesis as-
sociated with neurological recovery following MSCs grafting in animal
models of stroke (Omori et al., 2008; Onda et al., 2008; Pavlichenko et
al., 2008) and traumatic brain injury (TBI) (Xiong et al., 2009). Recovery
of a compromised blood brain barrier (BBB) alsowas reported following
intravenous administration of MSCs in an MPTP mouse model of PD,
suggesting that this is another mechanism involved in protection of DA
neurons (Chao et al., 2009). Further, in our studies, we have observed
dense GLUT-1-IR blood vessels around grafted Notch-induced MSCs
andhave speculated that an effect ofMSCs on blood vesselswas involved
in the observed rejuvenation of DA neurons (Glavaski-Joksimovic et al.,
2009). Most likely this effect was mediated through VEGF and/or other
angiogenic factors that are secreted from Notch-induced MSCs (Tate et
al., 2010).
Immunomodulatory and anti-inflammatory effects of MSCs in animal
models of PD

There is increasing body of evidence that inflammation andmicroglia
proliferation are implicated in the pathogenesis of PD, (Tansey and
Goldberg, 2010, review). Extensive proliferation of activated microglia
has been observed postmortem in SN of PD patients (Langston et al.,
1999; McGeer et al., 1988). Activated microglia are also present in
patients with early PD and they are correlated with the degree of DA
neuronal loss (Ouchi et al., 2005).Moreover, elevated levels of proinflam-
matory cytokines, such as tumor necrosis factor (TNF), interleukin-1
beta (IL-1β) and interferon-gamma (IFN-γ) have been detected in brains
of PD patients (Boka et al., 1994; Hunot et al., 1999; Mogi et al., 1994;
Nagatsu et al., 2000). Reactive microglia and proinflammatory cytokines
are also expressed in different animal models of PD (Cicchetti et al.,
2002; Depino et al., 2003; Gao et al., 2002) and degeneration of DA
neurons caused by lipopolysaccharide (LPS) or MPTP can be prevented
by administration of anti-inflammatory drugs, such as aspirin, salicylate,
dexamethasone and the selective COX-2 inhibitor rofecoxib (Aubin et al.,
1998; Castano et al., 2002; Teismann et al., 2003). There is also evidence
ecovery of DA fibers in the Fisher 344 rat striatum lesioned with 6-OHDA. 72 h after
lls were stained with anti-human nuclear antigen (hNA; red) antibody (B). C, overlaid
g. D, 72 h after transduction SB623 cells (yellow + pink) secrete a significant amount of
uares) from cells infected at 1, 5 or 10 MOI and corresponding samples diluted 100-fold
rGFP transduced SB623 cells were grafted 1 week after the lesion and rats were eutha-
cells had significantly fewer amphetamine induced rotations at 4 weeks post-grafting
). F, expression of GDNF in rat striatum at 5 weeks post-grafting of GDNF secreting
served in the graft site of a rat that received GDNF transduced SB623 cells. G–I, sections
ws) in graft sites in rat that received non-transduced SB623 cells in G, and even denser
d control rats, only sparse TH-IR fibers (arrow) were observed around the injection. In
eedle track. Bars in A–C and G–I = 50 μm and F = 100 μm.
with the permission provided by John Wiley and Sons Copyright Clearance Center.
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that nonsteroidal anti-inflammatory drugs have a protective role in PD
patients, as well (Chen et al., 2003; Wahner et al., 2007). In addition, it
has been shown that immunosuppressant cyclosporin A attenuates DA
degeneration in PD animal models (Kitamura et al., 1994; Matsuura et
al., 1996, 1997a, 1997b). The involvement of inflammation in PD patho-
physiology suggests that immunomodulatory and anti-inflammatory
effects of MSCs may partially underlie their beneficial effects after trans-
plantation in animal models of PD. Numerous pieces of evidence suggest
that MSCs have a dual role in the immune system and that they either
can suppress or activate an immune response (Stagg, 2007). It has
been reported that transplantation of allogeneic MSCs into a rat model
of PD can evoke a cellular immune response (Camp et al., 2009). On
the other hand, MSCs can elicit a suppressive effect on a broad range of
immune cells, including T lymphocytes, B lymphocytes, dendritic cells
and natural killer (NK) cells (Mezey et al., 2010; Nauta and Fibbe,
2007; Stagg, 2007). This interaction with the immune cells is achieved
through cell–cell contact and release of different factors that have immu-
nomodulatory effects (Nauta and Fibbe, 2007). Some of MSCs released
factors that are suggested to be implicated in immunomodulation
include interleukin-6 (IL-6), transforming growth factor beta (TGFβ),
prostaglandin E2 (PGE2), HGF, indoleamine 2,3-dioxygenase (IDO) and
monocyte colony stimulating factor (M-CSF) (Mezey et al., 2010; Nauta
and Fibbe, 2007). Conversely,MSCs can decrease inflammatory responses
through various mechanisms. Some of MSCs anti-inflammatory actions
are achieved through: a) expression of IL-1 receptor antagonist, b) secre-
tion of anti-TNFα stimulated gene/protein 6 (TSG-6) which modulates
the cascade of proinflammatory cytokines from resident macrophages,
c) release of PGE2 which converts macrophages to a phenotype that se-
cretes IL-10, and d) expression of stanniocalcin-1 that reduces reactive
oxygen species (Bartosh et al., 2010; Lee et al., 2009; Matysiak et al.,
2011; Nemeth et al., 2009; Oh et al., 2012; Ortiz et al., 2007; Prockop
and Oh, 2012; Roddy et al., 2011). It has been shown that MSCs exert
therapeutic effects through immunomodulatory and anti-inflammatory
actions in autoimmune encephalomyelitis and TBI (Galindo et al.,
2011; Gerdoni et al., 2007; Zappia et al., 2005). Recent studies also reveal
similarMSCs effects in PD. For example, Kim and co-workers demonstrat-
ed that MSCs have the ability to protect DA neurons through
anti-inflammatory actions that include decreased LPS-induced microglia
activation and production of nitric oxide and TNFα (Kim et al., 2009).
Similarly, Chao et al. (2009) revealed that the BBB is compromised in
an MPTP mouse PD model and observed infiltration of a peripheral in-
flammatory molecule mannose-binding lectin (MBL) in the brain, thus
suggesting involvement of peripheral immune components in the path-
ogenesis of PD. Further, their studies have shown that intravenous ad-
ministration of mouse BMSCs protects DA neurons from MPTP toxicity
through repair of BBB integrity, reduced levels of MBL in the brain and
decreased microglial activation (Chao et al., 2009). Together these
studies illustrate the importance of MSCs immunomodulatory and
anti-inflammatory effects in developing treatments for PD.

Genetically modified MSCs and their therapeutic potential in PD

The beneficial effects ofMSCs for PD can be enhanced by their genetic
modification to overexpress therapeutic genes. Numerous studies have
demonstrated that protein or gene delivery of growth factors, particular-
ly GDNF and neurturin, effectively protects DA neurons in an array of ro-
dent and primatemodels of PD (Bjorklund et al., 2000; Choi-Lundberg et
al., 1997, 1998; Connor et al., 1999; Eberling et al., 2009; Gash et al.,
1996; Gasmi et al., 2007; Herzog et al., 2007; Hoffer et al., 1994; Johnston
et al., 2009; Kells et al., 2010; Kordower et al., 2000, 2006; Kozlowski et
al., 2000; Natsume et al., 2001; Oiwa et al., 2002; Rosenblad et al.,
1999; Tomac et al., 1995). Ex vivo growth factor gene transfer into vari-
ous somatic cells and stem cells/progenitors followed by transplantation
into the parkinsonian brains, has also been investigated as an alternative
delivery approach (Cunningham et al., 1991; Date et al., 1996, 1997;
Ebert et al., 2008; Emborg et al., 2008; Frim et al., 1994; Galpern et al.,
1996; Grandoso et al., 2007; Lindvall and Wahlberg, 2008; Liu et al.,
2007; McLay et al., 2001; Schumacher et al., 1991; Wilby et al., 1999;
Yasuhara et al., 2004, 2005; Yoshimoto et al., 1995; Zhang et al., 2001).

MSCs are a prime candidate for ex vivo growth factor gene delivery
due to their amenability for genetic modification and advantages for
clinical applications, as discussed above. Several groups have investigat-
ed the potential of MSCs genetically engineered with GDNF, either by
transfection or viral transduction, to deliver this potent neurotrophic
factor for DA neurons in the brain. Park and co-workers first demon-
strated that MSCs are a suitable vehicle for delivering GDNF into the
parkinsonian mouse brain (Park et al., 2001). In their study, MPTP
mice that were intravenously injected with GDNF-engineered BMSCs
possessed more TH-IR neurons and fibers and demonstrated more
prominent behavioral recovery compared to control mice that received
unmodified BMSCs (Park et al., 2001). In a lactacystin-induced PD rat
model, intrastriatal transplantation of naive or GDNF-engineered
BMSCs significantly rescued DA neurons and evoked behavioral
recovery, but rats that received theGDNF-engineeredMSCs showed sig-
nificantly greater recovery (Wu et al., 2010). Moloney and colleagues
(Moloney et al., 2010) studied the effect of naive and GDNF-
transduced MSCs transplanted into rat striatum four days prior to a
6-OHDA-induced lesion of DA neurons. Although behavioral recovery
was not observed in either experimental group, transplantation of
GDNF-transduced cells evoked sprouting of TH-IR fibers in the immedi-
ate vicinity of the transplants, suggesting a localizedGDNF trophic effect
(Moloney et al., 2010). Similarly, we observed an increased density of
TH-IR fibers around the grafted Notch induced-BMSCs (SB623 cells;
SanBio Inc.) and Notch-induced BMSCs transduced with GDNFs that
were grafted into the striatum of 6-OHDA partially lesioned rats
(Glavaski-Joksimovic et al., 2010). However, the observed effect on
host TH-IR fibers was more prominent in rats that were grafted with
the GDNF transduced cells, and this correlatedwith behavioral recovery
only in this experimental group (Glavaski-Joksimovic et al., 2010;
Fig. 4). Shi and colleagues (Shi et al., 2011) studied the effects of
BMSCs that were transduced with TH and GDNF in 6-OHDA lesioned
rats. In their study, naive BMSCs did not affect apomorphine-induced
rotational behavior, while the average rotational rates were significant-
ly decreased in rats grafted with TH- and GDNF-modified BMSCs (Shi et
al., 2011). Transplantation of neurturin- or NGF-modified BMSCs in PD
rats also hadmore prominent effects on behavioral recovery than trans-
plantation of unmodified BMSCs (Wang et al., 2008; Ye et al., 2007a).
Further, VEGF over-expression in human umbilical cord MSCs signifi-
cantly increased DA differentiation of these cells and enhanced their
therapeutic effectiveness in a rotenone-induced rat PD model (Xiong
et al., 2011). In addition to MSCs modified with growth factors,
TH-engineered BMSCs (Lu et al., 2005) and BMSCs transduced to pro-
duce L-3,4-dihydroxyphenylalanine (L-DOPA) (Schwarz et al., 1999)
were shown to have significant therapeutic effects in PD rats. Together
these studies suggest that MSCs could be developed as a valuable gene
delivery vehicle for PD gene therapy.

Conclusion

There are numerous reasons for optimism concerning the use of
MSCs for neural repair and protection in PD therapy. The main body of
evidence on the effects of MSCs grafted into animal models of PD sug-
gests that MSCs act through paracrine mechanisms, release of various
neurotrophic, anti-inflammatory, immunomodulatory, anti-apoptotic
and angiogenic factors to affect cells in the host brain tissue and
promote recovery of compromised DA neurons. There is little support
for the hypothesis that MSCs promote recovery in animal models of
PD through replacement of DA neurons. In the future, it will be neces-
sary to conduct well-designed and carefully controlled clinical trials to
verify these regenerative effects of MSCs in non-human primates, and
then potentially in clinical trials to determine if the regenerative effects
observed in animal models will be applicable to diseased DA neurons.
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Although theMSCs approach is early in the clinical pipeline, thefindings
to date suggest this as a promising novel approach for PD.
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